PropertyValue
rdfs:label
  • Free electron Laser
  • Free electron laser
rdfs:comment
  • Free Electron Lasers were invented by John Madey in 1976 at Stanford University. The work emanates from research done by Hans Motz who proposed the wiggler magnetic configuration which is at the heart of a free electron laser. Madey used a 24 MeV electron beam and 5 m long wiggler to amplify a signal. Soon afterward, other laboratories with accelerators started developing such lasers. In "The Euclid Alternative", Leonard is working nights using the free-electron laser to conduct his X-ray diffraction experiment.
  • The radiation from a free-electron laser is produced from free electrons which are forced to oscillate in a regular fashion by an applied field. They are therefore more like synchrotron light sources or microwave tubes than like other lasers. They are able to produce highly coherent, collimated radiation over a wide range of frequencies. The magnetic field arrangement which produces the alternating field is commonly called a "wiggler" magnet. The free-electron laser is a highly tunable device which has been used to generate coherent radiation from 10^-5 to 1 cm in wavelength. In some parts of this range, they are the highest power source. Particularly in the mm wave range, the FELs exceed all other sources in coherent power. FELs involve relativistic electron beams propagating in a vacuum
dcterms:subject
dbkwik:big-bang-theory/property/wikiPageUsesTemplate
dbkwik:bigbangtheory/property/wikiPageUsesTemplate
abstract
  • Free Electron Lasers were invented by John Madey in 1976 at Stanford University. The work emanates from research done by Hans Motz who proposed the wiggler magnetic configuration which is at the heart of a free electron laser. Madey used a 24 MeV electron beam and 5 m long wiggler to amplify a signal. Soon afterward, other laboratories with accelerators started developing such lasers. In "The Euclid Alternative", Leonard is working nights using the free-electron laser to conduct his X-ray diffraction experiment.
  • The radiation from a free-electron laser is produced from free electrons which are forced to oscillate in a regular fashion by an applied field. They are therefore more like synchrotron light sources or microwave tubes than like other lasers. They are able to produce highly coherent, collimated radiation over a wide range of frequencies. The magnetic field arrangement which produces the alternating field is commonly called a "wiggler" magnet. The free-electron laser is a highly tunable device which has been used to generate coherent radiation from 10^-5 to 1 cm in wavelength. In some parts of this range, they are the highest power source. Particularly in the mm wave range, the FELs exceed all other sources in coherent power. FELs involve relativistic electron beams propagating in a vacuum and can be tuned continuously, filling in frequency ranges which are not reachable by other coherent sources. Applications of free-electron lasers are envisioned in isotope separation, plasma heating for nuclear fusion, long-range, high resolution radar, and particle acceleration in accelerators.