PropertyValue
rdfs:label
  • Wind power forecasting
rdfs:comment
  • A wind power forecast corresponds to an estimate of the expected production of one or more wind turbines (referred to as a wind farm) in the near future. By production is often meant available power for wind farm considered (with units kW or MW depending on the wind farm nominal capacity). Forecasts can also be expressed in terms of energy, by integrating power production over each time interval. Forecasting of the wind power generation may be considered at different time scales, depending on the intended application:
owl:sameAs
dbkwik:windenergy/property/wikiPageUsesTemplate
abstract
  • A wind power forecast corresponds to an estimate of the expected production of one or more wind turbines (referred to as a wind farm) in the near future. By production is often meant available power for wind farm considered (with units kW or MW depending on the wind farm nominal capacity). Forecasts can also be expressed in terms of energy, by integrating power production over each time interval. Forecasting of the wind power generation may be considered at different time scales, depending on the intended application: • from milliseconds up to a few minutes, forecasts can be used for the turbine active control. Such type of forecasts are usually referred to as very short-term forecasts • for the following 48-72 hours, forecasts are needed for the power system management or energy trading. They may serve for deciding on the use of conventional power plants (unit commitment) and for the optimization of the scheduling of these plants (economic dispatch). Regarding the trading application, bids are usually required during the morning of day d for day d+1 from midnight to midnight. These forecasts are called short-term forecasts • for longer time scales (up to 5-7 days ahead), forecasts may be considered for planning the maintenance of wind farms, or conventional power plants or transmission lines. For the specific case of offshore wind farms maintenance costs may be prohibitive, and thus an optimal planning of maintenance operations is of particular importance. For the last two possibilities, the temporal resolution of wind power predictions ranges between 10 minutes and few hours (depending on the forecast length). Lately, most of the works for improving wind power forecasting solutions have focused on using more and more data as input to the models involved, or alternatively on the providing of reliable uncertainty estimates along with the traditionally provided predictions.