PropertyValue
rdfs:label
  • Alpha decay
rdfs:comment
  • An alpha particle is the same as a helium-4 nucleus, and both mass number and atomic number are the same. Alpha decay is by far the most common form of cluster decay where the parent atom ejects a defined daughter collection of nucleons, leaving another defined product behind (in nuclear fission, a number of different pairs of daughters of approximately equal size are formed). Alpha decay is the most likely cluster decay because of the combined extremely high binding energy and relatively small mass of the helium-4 product nucleus (the alpha particle).
owl:sameAs
dcterms:subject
dbkwik:gravity/property/wikiPageUsesTemplate
abstract
  • An alpha particle is the same as a helium-4 nucleus, and both mass number and atomic number are the same. Alpha decay is by far the most common form of cluster decay where the parent atom ejects a defined daughter collection of nucleons, leaving another defined product behind (in nuclear fission, a number of different pairs of daughters of approximately equal size are formed). Alpha decay is the most likely cluster decay because of the combined extremely high binding energy and relatively small mass of the helium-4 product nucleus (the alpha particle). Alpha decay, like other cluster decays, is fundamentally a quantum tunneling process. Unlike beta decay, alpha decay is governed by the interplay between the nuclear force and the electromagnetic force. Alpha decay is a mode of radioactive decay seen only in heavier nuclides, with the lightest known alpha emitter being the lightest isotopes (mass numbers 106–110) of tellurium (element 52). Alpha particles have a typical kinetic energy of 5 MeV (that is, ≈ 0.13% of their total energy, i.e. 110 TJ/kg) and a speed of 15,000 km/s. This corresponds to a speed of around 0.05 c. There is surprisingly small variation around this energy, due to the heavy dependence of the half-life of this process on the energy produced (see equations in the Geiger–Nuttall law). Because of their relatively large mass, +2 electric charge and relatively low velocity, alpha particles are very likely to interact with other atoms and lose their energy, so their forward motion is effectively stopped within a few centimeters of air. Most of the helium produced on Earth (approximately 99% of it) is the result of the alpha decay of underground deposits of minerals containing uranium or thorium. The helium is brought to the surface as a byproduct of natural gas production.